Picocamera System Manual

Airborne Innovations LLC

info@airborneinnovations.com 720-515-3720

1 May 2017

Date	Notes
09/02/16	Initial Release
05/01/17	Modified usage to reflect merge with Microraptor firmware

Table of Contents

1 Introduction	3
2 Picocamera	3
2.1 Global Shutter camera advantages	3
2.2 Picocamera hardware interface	
2.2.1 Power	4
2.2.2 Ethernet	4
3 Usage	5
3.1 IP address	
3.2 Configuration	5
3.3 VLC	5
3.4 Gstreamer	6
3.5 Android tablet interface	6

1 Introduction

This document is a manual covering features and usage of the Airborne Innovations Picoraptor / Picocamera system.

2 Picocamera

Picocamera is a low latency streaming IP camera configurable with a 720P global shutter sensor and removable M12 lens

It mates well with Picoradio to form a long range capable combined IP camera+datalink system. With M2 standoffs you can mount the Picoradio on the back of Picocamera (but you need to take thermal considerations into account).

Figure 1: Picocamera photo

Specifications:

Weight 38.5g

Dimensions: boards 40x40mm (approx 40x44 mm with connectors), 2

8mm high board stack with connectors

approx 52mm long with lens

Sensor: 720p HD video, with global shutter sensor

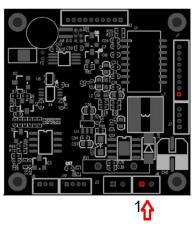
1080p rolling shutter sensor option

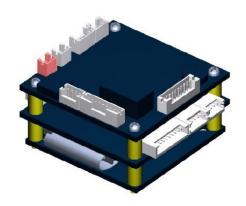
Power: 12V input

Output: Ethernet IP video stream, RTSP

Bitrate: 1-5 Mbps @ 720P30, up to 12 Mbps possible

Latency: End to end latency as low as approximately 100 msec.

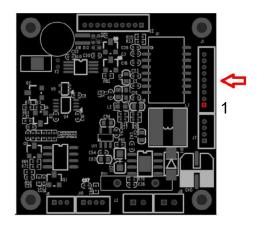

2.1 Global Shutter camera advantages

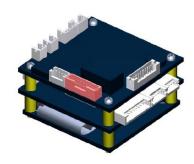

Most cameras such as GoPro etc. use rolling shutter sensors. For rolling shutter sensors the image is exposed as it is read out of the camera from top to bottom. As a result pixels are not all exposed at the same time, and left to right camera movement will result in a trapezoidal warp. Significant image vibration results in a wobbling jello warping effect.

In a global shutter sensor, all of the pixels are exposed simultaneously. Vibration can result in some image blurring depending on the exposure time, but there is no jello warping effect. In full sunlight, exposure times are typically very low (<5 milliseconds) and the image is usually very sharp.

2.2 Picocamera hardware interface

2.2.1 Power





Mating connector: Molex 0873690200

Pin	Description
1	+12V In
2	GND

2.2.2 Ethernet

Mating part: Hirose DF13-9S-1.25C

Airborne Innovations

Pre-crimped wires available: Digikey H4BBT-10110-B8-ND

Pin	Description
1	GND
2	Yellow LED out
3	Green LED out
4	48V POE
5	Ethernet Rx-
6	48V POE
7	Ethernet Rx+
8	Ethernet Tx-
9	Ethernet Tx+

3 Usage

3.1 IP address

The default IP address is 192.168.1.168.

3.2 Configuration

Configuration interface is http://192.168.1.168/config.html

user: admin pwd: 9999

Note that the input interface is set to 'Micro global shutter camera.'

Output resolution should be set to 720p or 720max60 (which will be 60 fps mode).

3.3 VLC

VLC is a popular freeware video client which may be used to stream and record video from the MicroraptorHD.

It is available for Windows / Mac / Linux / Android.

Download it from http://videolan.org

Once installed, you can enable the 'record' button by toggling on View/Advanced Controls. After it is enabled, the record button will toggle video recording. The destination directory depends on the platform, but is usually the Videos directory of the active user.

To stream video, select Media/Open Network Stream, and enter the following URL: rtsp://192.168.1.168:8557/PSIA/Streaming/channels/2?videoCodecType=H.264 You can also set the network caching parameter to 200 or 250 msec.

3.4 Gstreamer

For lowest latency you can use the Gstreamer media dev kit.

Under Windows, install: https://gstreamer.freedesktop.org/data/pkg/windows/1.9.2/gstreamer-1.0-x86-1.9.2.msi

Install Gstreamer.

Create a batch file called 'picocam.bat' in c:\gstreamer\1.0\x86\bin\picocam.bat:

gst-launch-1.0 rtspsrc location=rtsp://192.168.1.168:8557/PSIA/Streaming/channels/2?videoCodecType=H.264 latency=50 ! queue ! rtph264depay ! avdec h264 ! autovideosink

3.5 Android tablet interface

You may download the freeware Android client QtGStreamerHUD at: https://www.dropbox.com/s/iq65z4ab5b3vf8h/QtGStreamerHUD.apk?dl=0

If you connect a router to a Picoradio or Microhard base station, (ideally running OpenWRT, such as TP-Link, VoCORE, and, with patience, others), you can then connect the tablet to wifi and then to Picocamera or our PicoHDMI encoder.

QtGStreamerHUD allows you to enter a custom Gstreamer pipeline. The pipeline to use is: rtspsrc location=<u>rtsp://192.168.1.169:8557/PSIA/Streaming/channels/2?videoCodecType=H.264</u> latency=50! queue! rtph264depay! avdec h264

QtGStreamerHUD also allows you to connect to a Pixhawk / APM stream to display a HUD.

Note to get proper colors you have to 'reverse' the color bytes in this interface (there is an option to do this in the QtGStreamerHUD interface).